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Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Consume/define 
requirements

Further compounded 
by AI use

Software requirements are often specified informally
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Write an 
implementation

Formal (yet operational)

Significant gap (“what” vs. “how”)



Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Vision: Formal specifications can reduce the gap
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Write an 
implementation

Formal (yet operational)

Specifications

Enforceable by PL methods 
(tests, formal verification, refinement)  

Formal (declarative)

Smaller gap (both capture  “what”)

Consume/define 
requirements

Will create more trust in AI 
generated code

[Interactive Code Generation via Test-Driven User-Intent Formalization. Lahiri, Fakhoury et al., arXiv:2208.05950]

https://arxiv.org/abs/2208.05950


User-intent formalization (UIF) for programs

• Problem
• Evaluate the quality of (LLM-generated) formal specification given informal artefacts

• Natural language + code (interpreted neurally)
• Like “autoformalization” problem for math theorems, but crucial differences

• [Autoformalization with Large Language Models, Wu et al. NeurIPS’22]
• Input can optionally contain formal artefacts such as tests/specs etc.

• Challenge: Not a pure Programming Languages (PL) problem

• Solution:
• Adopt the approach of machine learning (ML) folks of establishing benchmarks 

(examples and {automated, objective} metrics)
• Make the metrics PL based (like nl2code generation)

4



User-intent formalism (UIF) for different 
programming languages
• UIF for mainstream languages (Python, Java), and use 

case
• Endres, Fakhoury, Chakraborty, Lahiri FSE’24

• UIF for verification-aware languages (Dafny, F*, Verus, …)
• Lahiri (in preparation)

• UIF for effectively analyzable symbolic languages 
(EASL)
• 3DGen: Fakhoury, Kuppe, Lahiri, Ramananandro, Swamy  
• vectorizeGPT: Taneja, Yan, Lahiri (in preparation)
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This talk

Lightning 
talks



UIF for mainstream languages (Python, Java)
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Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? Endres, Fakhoury, 
Chakraborty, Lahiri FSE’24 



Formal Specifications in Python
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UIF for mainstream languages (Python, Java)

[1,2,3,2,4] -> [1,3,4]

assert all(i in return_list for i in numbers if numbers.count(i) == 1)



Problem formulation and evaluation metrics
• Given

• NL description nl for a method m
• Hidden tests T and hidden reference implementation I

• Generate a postcondition S of m from nl 
• Evaluation metrics

• Test-set Soundness: S passes on I for all the tests in T
• Bug Completeness: S discriminates against buggy implementations {I’} 

• Inspired by mutation-testing 
• Insight: Generate list of buggy I’ by sampling LLM responses given nl and evaluating 

using T
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RQ1: Evaluation on basic Python programs

• Dataset: EvalPlus (HumanEval + extensive test suite)
• [Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code 

Generation. Liu et al. NeurIPS’23]

• Models: GPT-3.5, GPT-4 and open source StarCoder

• Takeaways:
• GPT-4 significantly better at producing test-set sound (~96% in 10 tries) and 

complete (~62% in 10 tries) specifications 
• Much more pronounced for completeness since assert True and assert

isinstance(return_list, list) are sound but not discriminatory
• The metrics correlate strongly with the result of manual labeling (by authors) of 

the generated specifications in most cases
• Challenge: need to rank specifications in increasing order of completeness for 

practical usage
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RQ2: Can GPT-4 generated specifications find 
real-world bugs?
• Experimental setup with Defects4J [Just, Jalali, Ernst. ISSTA 2014]

• Given two versions of a code: B (buggy), F (fixed)
• Prompted LLMs to generate a postcondition S given B
• Bug-discriminating postcondition

• Check if S fails B and succeeds F for some test t in provided test suite T

• GPT-4 found 47 bug-discriminating postcondition of the 525 bugs 
analyzed
• Complementary to prior assertion generation approaches TOGA [Dinella, Ryan, 

Mytkowicz, Lahiri, ICSE’22] and Daikon [Ernst et al. ICSE’99]

• TOGA mostly finds expected exceptional bugs. TOGA can only tolerate bugs during 
testing, and cannot prevent bugs in production. 

• Daikon specs overfit the regression tests and bug-discriminating specs are unsound

10



UIF for verification-aware languages 
  (Dafny, F*, Verus, …)
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Challenge

• Earlier approached do not readily apply
• Specifications contain ghost variables and complex quantifiers (cannot be evaluated 

using dynamic methods)
• Trying to verify specification against reference implementation would likely not be 

automated (intermediate lemmas and invariants)

• Our approach: symbolically test specifications (given tests as input/output 
examples)
• Given 

• A method signature
method Foo(x): (returns y) requires P(x) ensures Q(x, y)

• A set of input/output tests T
• Specification Soundness (for a test (i, o)) //Boolean metric

• {P} x := i; y := o; {Q} is valid
• Specification Completeness (for a test (i,o)) //Quantitative metric

• Fraction of mutants o’ of o, s.t. {P} x := i; y := o’; {Q} is not valid  
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Evaluation (preliminary)

• Dataset: ~200 Dafny specifications for MBPP-Dafny dataset
• [Towards AI-Assisted Synthesis of Verified Dafny Methods. Misu, Lopes, Ma, Noble. FSE’24]

• 50 hand-written, 153 GPT-4 generated and manually labeled {incorrect, 
weak, strong} 

• Problem: Evaluate the soundness/completeness metrics 
• Result 

• Translated the metrics into Dafny verification problems
• Requires auxiliary assertions for arrays/sequences to help quantifier instantiation

• Automated metrics gets parity with the human-labeling
• Finds instances where a “strong” specification is not complete
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predicate InArray(a: array<int>, x: int)
reads a
{exists i :: 0 <= i < a.Length && a[i] == x}

method SharedElements(a: array<int>, b: array<int>) returns (result: seq<int>)
ensures forall x :: x in result ==> (InArray(a, x) && InArray(b, x))
ensures forall i, j :: 0 <= i < j < |result| ==> result[i] != result[j]

method SharedElementsTest(){
var a1:= new int[] [3, 4, 5, 6];
var a2:= new int[] [5, 7, 4, 10];
var res1:=SharedElements(a1,a2);

//expected[4, 5];
}
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"Write a function to find the shared elements 
from the given two lists."

GPT4 generated.
Labeled as 
“strong”

Our metric marks this as a 
weak specification (wrt the test)

Changing ==> to  <==> makes it a 
strong invariant by our metric



Questions
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