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Vision: Formal specifications can reduce the gap
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[Interactive Code Generation via Test-Driven User-Intent Formalization. Lahiri, Fakhoury et al., arXiv:2208.05950]



https://arxiv.org/abs/2208.05950

User-intent formalization (UIF) for programs

* Problem
* Evaluate the quality of (LLM-generated) formal specification given informal artefacts

* Natural language + code (interpreted neurally)
* Like “autoformalization” problem for math theorems, but crucial differences
* [Autoformalization with Large Language Models, Wu et al. NeurlPS’22]

* |[nput can optionally contain formal artefacts such as tests/specs etc.

* Challenge: Not a pure Programming Languages (PL) problem

e Solution:

* Adoptthe approach of machine learning (ML) folks of establishing benchmarks
(examples and {automated, objective} metrics)

 Make the metrics PL based (like nl2code generation)



User-intent formalism (UIF) for different
programming languages

* UIF for mainstream languages (Python, Java), and use
case
* Endres, Fakhoury, Chakraborty, Lahiri FSE’24

— This talk
* UIF for verification-aware languages (Dafny, F*, Verus, ...)
* Lahiri (in preparation)
* UIF for effectively analyzable symbolic languages 7
(EASL) Lightning
 3DGen: Fakhoury, Kuppe, Lahiri, Ramananandro, Swamy — talks
* vectorizeGPT: Taneja, Yan, Lahiri (in preparation)




UIF for mainstream languages (Python, Java)

Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? Endres, Fakhoury,
Chakraborty, Lahiri FSE’24



UIF for mainstream languages (Python, Java)

O
° def remove_duplicates(nhumbers: List[int]):

"™" From a list of integers, remove all elements that occur more than once,
- Keep order of elements left the same as in the input."""

Formal Specifications in Python

assert len(set(numbers)) == len(set(return_list))

assert all(numbers.count(i) == 1 for i in return_list) ‘-""’

assert all(i in return_list for i in numbers if numbers.count(i) == 1)

X




Problem formulation and evaluation metrics

* Given
* NL description nl for a method m
* Hidden tests T and hidden reference implementation |

* Generate a postcondition S of m from nl

* Evaluation metrics
* Test-set Soundness: S passeson | forallthetestsin T

* Bug Completeness: S discriminates against buggy implementations {I’}
* |nspired by mutation-testing

* Insight: Generate list of buggy I’ by sampling LLM responses given nl and evaluating
using T

Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? Endres, Fakhoury, Chakraborty, Lahiri FSE’24
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RQ1: Evaluation on basic Python programs

* Dataset: EvalPlus (HumanEval + extensive test suite)

* [Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code
Generation. Liu et al. NeurlPS’23]

* Models: GPT-3.5, GPT-4 and open source StarCoder

* Takeaways:

* GPT-4 significantly better at producing test-set sound (~96% in 10 tries) and
complete (~62% in 10 tries) specifications

* Much more pronounced for completeness since assert True and assert
isinstance(return_list, list) are sound but not discriminatory

* The metrics correlate strongly with the result of manual labeling (by authors) of
the generated specifications in most cases

* Challenge: need to rank specifications in increasing order of completeness for
practical usage



RQ2: Can GPT-4 generated specifications find
real-world bugs?

* Experimental setup with Defects4) ust, Jalali, Emst. 1SSTA 2014]
* Given two versions of a code: B (buggy), F (fixed)
* Prompted LLMs to generate a postcondition S given B

* Bug-discriminating postcondition
* Checkif S fails B and succeeds F for some test tin provided test suite T

* GPT-4 found 47 bug-discriminating postcondition of the 525 bugs
analyzed
« Complementary to prior assertion generation approaches TOGA [Dinella, Ryan,
Mytkowicz, Lahiri, ICSE’22]1 and Daikon [Ernst et al. ICSE’99]

* TOGA mostly finds expected exceptional bugs. TOGA can only tolerate bugs during
testing, and cannot prevent bugs in production.

* Daikon specs overfit the regression tests and bug-discriminating specs are unsound
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UIF for verification-aware languages
(Dafny, F* Verus, ...)



Challenge

 Earlier approached do not readily apply

* Specifications contain ghost variables and complex quantifiers (cannot be evaluated
using dynamic methods)

* Trying to verify specification against reference implementation would likely not be
automated (intermediate lemmas and invariants)

 Our approach: symbolically test specifications (given tests as input/output
examples)
* Given
* A method signature
method Foo(x): (returns y) requires P(x) ensures Q(x, y)
* Asetofinput/outputtests T
* Specification Soundness (for a test (i, 0)) //Boolean metric
« {P} x :=1; y := o; {Q} isvalid
* Specification Completeness (for a test (i,0)) //Quantitative metric
* Fraction of mutants o’of o, s.t. {P} x := i; y := 0o’; {Q} isnotvalid
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Evaluation (preliminary)

* Dataset: ~200 Dafny specifications for MBPP-Dafny dataset

* [Towards Al-Assisted Synthesis of Verified Dafny Methods. Misu, Lopes, Ma, Noble. FSE’24]

* 50 hand-written, 153 GPT-4 generated and manually labeled {incorrect,
weak, strong}

* Problem: Evaluate the soundness/completeness metrics

 Result

* Translated the metrics into Dafny verification problems
* Requires auxiliary assertions for arrays/sequences to help quantifier instantiation

* Automated metrics gets parity with the human-labeling
* Finds instances where a “strong” specification is not complete
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"Write a function to find the shared elements
from the given two lists.”

predicate InArray(a: array<int>, x: int)
reads a
{exists i :: @ <=1 < a.Length && a[i] == x}

—_—

method SharedElements(a: array<int>, b: array<int>) returns (result: seqg<int>) GPT4 generated.

ensures forall x :: x in result ==>w(InArray(a, x) && InArray(b, x))
ensures forall i, j :: @ <=1 < j < sult| ==> result[i] != result[j]

method SharedElementsTest(){
var al:= new int[] [3, 4, 5, 6];
var a2:= new int[] [5, 7, 4, 10];
var resl:=SharedElements(al,a2);
//expected[4, 5];

L Labeled as
“strong”

Our metric marks this as a
weak specification (wrt the test)

Changing ==>to <==>makesita
strong invariant by our metric
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Vision: Formal specifications can reduce the gap
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User-intent formalism (UIF) for different
programming languages

* LIIF for mainstream languages (Python, Java), and use
case
= Endres, Fakhoury, Chakraborty, Lahiri FSE°24
= THES 12lk
* UIF for verification-aware languages (Dafny, F*, Verus, ...)
= Lahiri [in preparation)
* UIF for effectively analyzable symbolic languages -
(EASL) Lightring
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