
Microsoft Research

3DGen: AI-assisted Generation of Provably
Correct Binary Format Parsers

Sarah Fakhoury, Markus Kuppe, Shuvendu Lahiri, Tahina Ramananandro, Nikhil Swamy
Microsoft Research

Secure Binary Data Parsing is Critical
• Parsing and input validation failures: A major root cause of software security vulnerabilities
• `80%, according to DARPA, MITRE
• Mostly due to handwritten parsing code

• Especially disastrous in memory unsafe languages
• Better in Rust, but still open to runtime panics and functional bugs

• Writing functionally correct parsers is hard
• Endianness, data dependencies, size constraints, etc.

A First Step: Verified Parser Generation with

• Abolish writing parser code by hand

• Instead, specify data formats in 3D, a high-level declarative notation

• Auto-generate provably correct performant C code to parse binary
messages

• Integrate with generated code with existing codebases

3

[1] Swamy, Nikhil, et al. "Hardening attack surfaces with formally proven binary format parsers." International Conference on Programming Language Design and Implementation (PLDI). 2022.
[2] Ramananandro, Tahina, et al. "EverParse: Verified secure zero-copy parsers for authenticated message formats." 28th USENIX Security Symposium (USENIX Security 19). 2019

F* code and proof

formal
specification

low-level
implementation

verified libraries
for combinators

Safe high-performance C (or Rust) code

Starting from a language of message formats
resembling C type definitions

EverParse auto-generates parsing code in C
that is:
- Safe
- Functionally Correct
- Fast (zero-copy)
- Double-fetch free
- Portable

Correctness:
Accept only all well-formed messages

Functional Specification: Data Format Description

4

Microsoft Research

Current Approach

Microsoft Research

3DGen: AI-Assisted Generation of Verified Parsers

Microsoft Research

• Three Agent personas collaborating:
o Planner: dictates roles, orchestrates

conversation
o Domain Expert Agent: Extracts

constraints from NL or Code, provides
feedback about generated specification

o 3D Agent: translates extracted
specifications into 3D

• Implemented with AutoGen [1]
o Composable

Retrieval Augmented (RAG) agents

• No fine-tuning, easy migration to GPT-X!
o Gpt-4-32k model

Agent Implementation

[1] Wu, Qingyun, et al. "AutoGen: Enabling next-gen LLM applications via multi-agent conversation framework." arXiv preprint arXiv:2308.08155 (2023)

Microsoft Research

Test Module

Syntax Checker
• Feedback from 3D language parser

Packet Validator
• Test candidate specifications against a

large set of (+ve/-ve) packets

Microsoft Research

Test Module

Test Set Construction:
• Existing real-world packets
• Z3 packet generator

• Input: candidate 3D specification
compiled into SMT2

• Output: sample packets
• LLM packet generator

• Input: RFC
• Output: Sample packets

All packets labeled with legacy parser

Microsoft Research

• 21 Pages of specifications

• 8 message types
• Destination Unreachable Message
• Time Exceeded Message
• Parameter Problem Message
• Source Quench Message
• Redirect Message
• Echo or Echo Reply Message
• Timestamp or Timestamp Reply Message
• Information Request or Information Reply Message

Example Walkthrough: Internet Control Message Protocol (ICMP)

Microsoft Research

Microsoft Research

Microsoft Research

Refinement: packet feedback

Specification fails on test set!

Test Module Feedback

Microsoft Research

Refinement: packet feedback

Microsoft Research

Refinement: packet feedback

Microsoft Research

Specification passes on all tests!

Microsoft Research

• Tests achieve ~93% line coverage on
Wireshark ICMP parser

• Uncovered 1 bug in the handwritten
ICMP 3D specification!

• Semantically equivalent to the
handwritten spec (after bug fix) using
symbolic differential testing

Microsoft Research

Choosing between multiple plausible candidates:

Multiple candidate specifications may pass the test set, but are not semantically equivalent
1. Differentiate between candidate specifications using symbolic test generation
2. Validate differentiating tests against a legacy parser

What if I have no legacy parser?
Domain expert reviews a set of differentiating tests to identify desired behavior.

Microsoft Research

Interpreting RFCs is not always easy
Writing specifications by hand is easy to get wrong!

Verifying internal Microsoft Parsers with 3DGen

Open-source
• 20 Standard Wireshark

Protocols
• Windows eBPF IOCTLs, ELF file

formats

Microsoft Internal
• Azure Hyper-V networking

protocols
• .NET Http.sys IOCTLs

20

• DSLs helpful intermediate abstractions for complex generation tasks
• DSLs unlock use of symbolic tools critical to guide LLMs + provide

guarantees
More on

Trusted AI-Assisted
Programming at MSR!

