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Secure Binary Data Parsing is Critical
• Parsing and input validation failures: A major root cause of software security vulnerabilities
• `80%, according to DARPA, MITRE
• Mostly due to handwritten parsing code

• Especially disastrous in memory unsafe languages
• Better in Rust, but still open to runtime panics and functional bugs

• Writing functionally correct parsers is hard
• Endianness, data dependencies, size constraints, etc.



A First Step: Verified Parser Generation with

• Abolish writing parser code by hand

• Instead, specify data formats in 3D, a high-level declarative notation

• Auto-generate provably correct performant C code to parse binary 
messages

• Integrate with generated code with existing codebases
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Safe high-performance C (or Rust) code

Starting from a language of message formats
resembling C type definitions

EverParse auto-generates parsing code in C
that is:
- Safe
- Functionally Correct
- Fast (zero-copy)
- Double-fetch free
- Portable

Correctness:
Accept only all well-formed messages

Functional Specification: Data Format Description
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Current Approach
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3DGen: AI-Assisted Generation of Verified Parsers 
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• Three Agent personas collaborating:
o Planner: dictates roles, orchestrates 

conversation
o Domain Expert Agent: Extracts 

constraints from NL or Code, provides 
feedback about generated specification

o 3D Agent: translates extracted 
specifications into 3D

• Implemented with AutoGen [1]
o Composable 

Retrieval Augmented (RAG) agents

• No fine-tuning, easy migration to GPT-X!
o Gpt-4-32k model

Agent Implementation

[1] Wu, Qingyun, et al. "AutoGen: Enabling next-gen LLM applications via multi-agent conversation framework." arXiv preprint arXiv:2308.08155 (2023)
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Test Module

Syntax Checker
• Feedback from 3D language parser

Packet Validator
• Test candidate specifications against a 

large set of (+ve/-ve) packets



Microsoft Research

Test Module

Test Set Construction:
• Existing real-world packets
• Z3 packet generator

• Input: candidate 3D specification 
compiled into SMT2

• Output: sample packets
• LLM packet generator

• Input: RFC
• Output: Sample packets

All packets labeled with legacy parser
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• 21 Pages of specifications

• 8 message types
• Destination Unreachable Message
• Time Exceeded Message
• Parameter Problem Message
• Source Quench Message
• Redirect Message
• Echo or Echo Reply Message
• Timestamp or Timestamp Reply Message
• Information Request or Information Reply Message

Example Walkthrough: Internet Control Message Protocol (ICMP)
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Refinement: packet feedback

Specification fails on test set!

Test Module Feedback
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Refinement: packet feedback
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Refinement: packet feedback
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Specification passes on all tests!
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• Tests achieve ~93% line coverage on 
Wireshark ICMP parser

• Uncovered 1 bug in the handwritten 
ICMP 3D specification!

• Semantically equivalent to the 
handwritten spec (after bug fix) using 
symbolic differential testing
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Choosing between multiple plausible candidates:

Multiple candidate specifications may pass the test set, but are not semantically equivalent
1. Differentiate between candidate specifications using symbolic test generation
2. Validate differentiating tests against a legacy parser

What if I have no legacy parser?
Domain expert reviews a set of differentiating tests to identify desired behavior.
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Interpreting RFCs is not always easy
Writing specifications by hand is easy to get wrong!



Verifying internal Microsoft Parsers with 3DGen

Open-source
• 20 Standard Wireshark 

Protocols
• Windows eBPF IOCTLs, ELF file 

formats

Microsoft Internal
• Azure Hyper-V networking 

protocols
• .NET Http.sys IOCTLs
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• DSLs helpful intermediate abstractions for complex generation tasks
• DSLs unlock use of symbolic tools critical to guide LLMs + provide 

guarantees
More on

Trusted AI-Assisted 
Programming at MSR!


