= Microsoft

3DGen: Al-a:
Correct Bina

U

-

Sarah Fakhoury, Markus Kuppe, Shuvendu Lahiri, Tahlna Ramananandro
Microsoft Research e

Microsoft Research

Secure Binary Data Parsing is Critical

Parsing and input validation failures: A major root cause of software security vulnerabilities
'80%, according to DARPA, MITRE

Mostly due to handwritten parsing code
» Especially disastrous in memory unsafe languages
» Better in Rust, but still open to runtime panics and functional bugs

Writing functionally correct parsers is hard
* Endianness, data dependencies, size constraints, etc.

A First Step: Verified Parser Generation with

everparse

* Abolish writing parser code by hand
* Instead, specify data formats in 3D, a high-level declarative notation

e Auto-generate provably correct performant C code to parse binary
messages

* Integrate with generated code with existing codebases

[1] Swamy, Nikhil, et al. "Hardening attack surfaces with formally proven binary format parsers." International Conference on Programming Language Design and Implementation (PLDI). 2022.
[21 Ramananandro, Tahina, et al. "EverParse: Verified secure zero-copy parsers for authenticated message formats." 28th USENIX Security Symposium (USENIX Security 19). 2019

Starting from a language of message formats
resembling C type definitions

EverParse auto-generates parsing code in C
that is:

- Safe

- Functionally Correct
- Fast (zero-copy)

- Double-fetch free

- Portable

Correctness:
Accept only all well-formed messages

everparse

Functional Specification: Data Format Description

typedef struct _RNDIS_PACKET(UINT32 Expected)

{
UINT32 NdisMessageType

{
¥
UINT32 Messagelength
{

NdisMessageType == REMOTE_NDIS_PACKET_MSG

Messagelength >= sizeof(this) &&
MessagelLength == Expected
¥
RNDIS_MESSAGE (Expected - sizeof(this))
Message;

} RNDIS_PACKET;

F* code and proof

formal low-level verified libraries
specification implementation for combinators

4

Safe high-performance C (or Rust) code

2% Microsoft

Input

Current Approach

Documentation

o o

——

Legacy Parser

Tests

Build domain
expertise

Human Experts

Manually write
a specification

Compile into a verified high-

performance
C parser

Format.3d

||

VAN

everparse

= Micosoft— IDGen: Al-Assisted Generation of Verified Parsers

Input
Documentation n e 9
T Request a 3d Agent generates Compile into a verified high-
E Specification a specification performance
C parser

" ——

Legacy Parser

e () AlAgent pmmp FOrMAt3d everparse
> |/

Syntax/ Test Candidate
Feedback Format.3d

Test Set

| .J """""""""""" a
@,—u :ZB Test Module

<

Agent Implementation

Three Agent personas collaborating:
o Planner: dictates roles, orchestrates
conversation

Al Agent

3D Agent

Language Manual
Task examples

I

)V) \
v |
S o ./

——

X

Documentation |egacy Parser

<[>

Domain Expert Agent

o Domain Expert Agent: Extracts
constraints from NL or Code, provides Planner Agent
feedback about generated specification ,
o 3D Agent: translates extracted }ﬁ.\
specifications into 3D 5=
Implemented with AutoGen [1] Argzztgfalf:
o Composable
Retrieval Augmented (RAG) agents Test Module
A
. . . . " | 23
No fine-tuning, easy migration to GPT-X!
o Gpt-4-32k model

[1] Wu, Qingyun, et al. "AutoGen: Enabling next-gen LLM applications via multi-agent conversation framework." arXiv preprint arXiv:2308.08155 (2023)

Test Module

1@ Al Agent

Syntax Checker

* Feedback from 3D language parser
Syntax/Test

Feedback

PacketValidator @z = = n o ______ P s b, S ap e e

* Test candidate specifications against a
large set of (+ve/-ve) packets

Microsoft Research

L Candidate
Format.3d

Test Module

Syntax Packet
Checker Validator

Test Set

Al Packet Generator

SR LLM &
0 "0 j /> Real-world

[e packets

Test Module

Q Al Agent

Test Set Construction:
* Existing real-world packets

* Z3 packet generator ,
: cpe Candidate
* Input: candidate 3D specification Syntax/Test
o Format.3d
compiled into SMT2 Feedback Test Module
e Qutput: samplepackets ~ § 77— -- R e et it e e g s e e
* LLM packet generator Syntax Packet
* Input: RFC Checker Validator

Output: Sample packets

Test Set
Al Packet Generator

All packets labeled with legacy parser

LLM &

(/) Real-world

EEL i packets

Microsoft Research

Example Walkthrough: internet Control Message Protocol (ICMP

* 21 Pages of specifications

* 8 message types
e Destination Unreachable Message
 Time Exceeded Message
* Parameter Problem Message
e Source Quench Message
* Redirect Message
* Echo or Echo Reply Message
 Timestamp or Timestamp Reply Message
* Information Request or Information Reply Message

Microsoft Research

Ketwork Working Group J. Postel

Request for Comments: 792 181
September 1981

Updates: R¥FCs 777, 760

Updates: IENs 109, 128

INTERNET CONTROL MESSAGE PROTOCOL

DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

Introduction

The Internet Protocol (IP) (1) is used for host-to-host datagram
service in a system of interconnected networks called the

Catenet (2). The network connecting devices are called Gateways.
These gateways communicate between themselves for control purposes
via a Gateway to Gateway Protocol (GGP) [3,4). Occasionally a
gateway or destination host will communicate with a source host, for
example, to report an error in datagram processing. For such
purposes this protocol, the Internet Control Message Protocol (ICMP),
is used. ICMP, uses the basic support of IP as if it were a higher
level protocol, however, ICMP is actually an integral part of IP, and
must be implemented by every IP module.

ICMP messages are sent in several situations: for example, when a
datagram cannot reach its destination, when the gateway does not have
the buffering capacity to forward a datagram, and when the gateway
can direct the host to send traffic on a shorter route.

The Internet Protocol is not designed to be absolutely reliable. The
purpose of these control messages is to provide feedback about
problems in the communication environment, not to make IP reliable.
There are still no guarantees that a datagram will be delivered or a
control message will be returned. Some datagrams may still be
undelivered without any report of their loss. The higher level
protocols that use IP must implement their own reliability procedures
if reliable communication is required.

The ICMP messages typically report errors in the processing of
datagrams. To avoid the infinite regress of messages about messages
etc., no ICMP messages are sent about ICMP messages. Also ICMNP
messages are only sent about errors in handling fragment zero of
fragemented datagrams. (Fragment zero has the fragment offeset equal
zero).

(Page 1)

2% Microsoft

Planner Agent

Agent Roles
Task Goals

Test Module

77z

Microsoft Research

1. Understand the RFC: First, we need to understand the RFC and its structure. The RFC
describes the Internet Control Message Protocol (ICMP), which is used for error
reporting and diagnostics in the IP layer. The ICMP messages are encapsulated within
IP datagrams and have a specific format.

2. Identify Relevant Parts: Not all of the RFC is relevant to our task. We are
interested in the "Message Formats" section, which describes the different types of
ICMP messages and their structures. Specifically, we need to translate the

specifications of these message formats into 3D code.

3. Decompose the RFC: We will break down the relevant parts of the RFC into smaller
pieces. For each type of ICMP message, we will identify the fields and their
properties (e.g., type, length, and purpose).

4. Translate to 3D Code: For each type of ICMP message, we will write a corresponding
3D struct. Each struct will contain fields that match the ones described in the RFC.
The type and constraints of each field will be based on the properties identified in
the previous step.

5. Verify the Code: We will use the "functions.test_module’ tool to execute the 3D
code and verify that it correctly implements the specifications in the RFC. If any
errors or issues are found, we will revise the code accordingly.

7. Repeat Steps 3-6: We will repeat these steps for each type of ICMP message
described in the RFC.

8. RFC Expert Review: Once all the message types have been translated to 3D code, the
RFC expert will review the code to ensure that it accurately captures the
specifications in the RFC.

9. Finalize the Code: After the RFC expert has approved the code, we will finalize it
and complete the task.

2% Microsoft

Documentation

e it~
— - =l

-

Domain Expert Agent

Microsoft Research

To implement the plan described, let's start by understanding the key elements of the
provided ICMP (Internet Control Message Protocol) RFC 792 document. The main messages
specified are:

- ICMP Header (common to all ICMP messages)

- Destination Unreachable Message

- Time Exceeded Message

- Parameter Problem Message

- Source Quench Message

- Redirect Message

- Echo or Echo Reply Message

- Timestamp or Timestamp Reply Message

- Information Request or Information Reply Message.

Every message has some common elements, i.e., a 'Type', 'Code', and 'Checksum'.
Moreover, every message after these fields has a specific structure depending on its
type. Thus, we should first define these classes for the general ICMP header and then
create specific types using the “casetype” declaration in 3D for each type of ICMP
message.

Refinement: packet feedback

Test Module Feedback
>>>>>>>> EXECUTING FUNCTION test specification...

*¥¥%** Response from calling function "test_specification” *¥¥*x*

Code did not correctly parse protocol packets:
Witness from ./3DGen/packets/binary files/ICMP/Echo Reply ©.dat REJECTED because

validator only consumed 9 out of 40 bytes
Parsing failed at position 5: type name _Echo, field name Data. Reason:

constraint failed
kokkkkkkkkkkKkKKkkkKkKKKkKKKkKKKKKkKKKKKKkKKkKKKKKKkRKKKKKKkkKKKKkKkKkKX%K

Specification fails on test set!

Microsoft Research

Refinement: packet feedback

Echo or Echo Reply Message

0 1 2 3
0123456789012 34567890123456789°01
tetot—totetototot—tetotot ottt ettt ottt ettt et ettt =ttt =+
| Type | Code | Checksum |
tetot—totetototot bttt ottt ettt ottt ettt et —t bt =ttt =+
| Identifier | Sequence Number |
FoFF—F—FFFF—F—FFFF—F-F-t—t—t—t=t—t ettt -ttt ettt =t —t—+
| Data ...

S S S

The error is due to the incorrect Data declaration "UINT8 Data; The size of the

3D Agent

"Data’ field is not specified in the RFC. We can assume that the "Data’ field takes up
the rest of the packet. In 3d, we can specify this by using the " [:consume-all]’
notation, which means that the array extends to the end of the packet. Let's correct
this and try again.

Microsoft Research

Refinement: packet feedback

typedef struct _ECHO %
UINT8 Code { Code == 0 %;

3D Agent UINT16BE Checksum;
| UINT16BE Identifier;
Qéib UINT16BE SequenceNumber;
| — UINT8 Data;

+ | UINT8 Data[:consume-all];
$ ECHO;

Microso ft Researc h

12
20
21
27
28
34
35
11
42
50
51
56

v

typedef struct _DEST_UNREACHABLE § -~
> typedef struct _PARAMETER_PROBLEM { -
? PARAMETER_PROBLEM;
> typedef struct _SOURCE_QUENCH { -
3 SOURCE_QUENCH;
> typedef struct _REDIRECT § -
¥ REDIRECT;
> typedef struct _ECHO § -
3 ECHO;
> typedef struct _TIMESTAMP § -
3 TIMESTAMP;
> typedef struct _INFO_REQUEST { -
3 INFO_REQUEST;

3D Agent

Specification passes on all tests!

Microsoft Research

Ul
W= © 0

W W W W W WN SN SN SN SN SN SN SN SN YNYNWWWWwWwWwwwww
O p WMNNELEOOWOLONOOOUPE, WMNNE O OOWNOO O B

typedef struct _TIME_EXCEEDED §
UINT8 Code { Code == 0 || Code == 1 %;
UINT16BE Checksum;
UINT32BE unused §{ unused == 0 %;
IPV4::IPV4_HEADER Header;
UINT64BE DataDatagram;

3 TIME_EXCEEDED;

casetype _ICMP_MESSAGE (UINT8 Type) {
switch(Type) {
case 3: DEST_UNREACHABLE DestUnreachable;

case
case
case
case
case
case
case
case
case
case

3

11:
12:

4:
S:
8:
0:

13:
14:
15:
16:

TIME_EXCEEDED TimeExceeded;
PARAMETER_PROBLEM ParameterProblem;
SOURCE_QUENCH SourceQuench;

REDIRECT RedirectMessage;

ECHO Echo;

ECHO EchoReply;

TIMESTAMP Timestamp;

TIMESTAMP Timestamp;

INFO_REQUEST InfoReply;
INFO_REQUEST InfoRequest;

3 ICMP_MESSAGE;

entrypoint typedef struct _ICMP_PACKET {
UINT8 Type;
ICMP_MESSAGE(Type) icmp_message;

3 ICMP_PACKET;

2 > typedef struct _DEST_UNREACHABLE § - 58 typedef struct TIME EXCEEDED §
ig > ;yg::f\;E:Z;‘_‘EEOEE’E‘D‘:?METER-PROBLE” & 59 UINTS Code § Code == @ || Code == 1 };
>1 > typedef struct _SOURCE_QUENCH - °0 UINT16BE Checksum;
57 3 SOURCE_QUENCH; 51 UINT32BE unused § unused == 0 %;
8 > typedef struct REDIRECT { - 52 IPV4::IPV4_HEADER Header;
34 3 REDIRECT; 53 UINT64BE DataDatagram;
35 > typedef struct _ECHO f - 54 3 TIME_EXCEEDED;
11 3} ECHO; 55
12 > typedef struct _TIMESTAMP § - 56 casetype _ICMP_MESSAGE (UINT8 Type) {
50 3 TIMESTAMP; 57 switch(Type) §
>1 > typedef struct _INFO_REQUEST { - 58 case 3: DEST_UNREACHABLE DestUnreachable;
°6 3 INFO_REQUEST; 59 case 11: TIME_EXCEEDED TimeExceeded;
70 case 12: PARAMETER_PROBLEM ParameterProblem;
71 case 4: SOURCE_QUENCH SourceQuench;
72 case 5: REDIRECT RedirectMessage;
e Tests achieve ¥93% line coverage on 73 case 8: ECHO Echo;
Wireshark ICMP parser 74 case 0: ECHO EchoReply;
75 case 13: TIMESTAMP Timestamp;
. . 76 case 14: TIMESTAMP Timestamp;
* Uncovered 1 bug in the handwritten 77 case 15: INFO_REQUEST InfoReply:
ICMP 3D specification! 78 case 16: INFO_REQUEST InfoRequest;
79 3
« Semantically equivalent to the ;i 3 ICMP_MESSAGE;
handwr.ltte.n Spec .(after Ic.)ug fix) using 32 entrypoint typedef struct ICMP_PACKET §
symbolic differential testing 33 UINTS Type;
Microsoft Research 34 ICMP_MESSAGE(Type) icmp_message;
35 3 ICMP_PACKET;

Choosing between multiple plausible candidates:

Multiple candidate specifications may pass the test set, but are not semantically equivalent
1. Differentiate between candidate specifications using symbolic test generation
2. Validate differentiating tests against a legacy parser

What if | have no legacy parser?
Domain expert reviews a set of differentiating tests to identify desired behavior.

multiple candidate
specifications

Validate + prune

Z3
\L Format.3d h Differentiating H—V‘ OR

Microsoft F ___/ Domain Expert Legacy Parser

2% Microsoft

Protocol | Equivalent? | Root Cause Divergence After H.S. Fix
UDP X H.S. Missing constraint on Length field v

ICMP X H.S. UNUSED_BYTES type too short v

VXLAN X H.S. VXLanID field too short v

IPV6 v None n/a

Ethernet v None n/a

Interpreting RFCs is not always easy
Writing specifications by hand is easy to get wrong!

Microsoft Research

Verifying internal Microsoft Parsers with 3DGen

Open-source

e 20 Standard Wireshark
Protocols

 Windows eBPF IOCTLs, ELF file
formats

Microsoft Internal

* Azure Hyper-V networking
protocols

* .NET Http.sys IOCTLs

Protocol (Vgrl;i(s)n) (Ifg;ctg Description

1 UDP* 768 3 User Datagram Protocol

2 ICMPv4 * 792 21 Internet Control Message Protocol

3 VXLAN* 7348 22, Virtual eXtensible Local Area Network

4 JPV6* 2460 39 (24) Internet Protocol version 6

5 IPV4* 791 45 (12) Internet Protocol version 4

6 TCP* 793 85 (10) Transmission Control Protocol

7 Ethernet* 7348 29 Ethernet II Frames in VXLAN

8 GRE 2784 9 Generic Routing Encapsulation

9 IGMPv2 2236 24 Internet Group Managment Protocol
10 DHCP 2131 45 (4) Dynamic Host Configuration Protocol
11 DCCP 4340 129 (14) Datagram Congestion Control Protocol
12 ARP 826 10 Address Resolution Protocol

13 NTP 5905 110 (4) Network Time Protocol

14 NBNS 1002 84 (6) NetBIOS Name Service
15 NSH 8300 40 (8) Network Service Header
16 TFTP 1350 i Trivial File Transfer Protocol

17 RTP 3550 104 (3) Transport Protocol for Real-Time Applications
18 PPP 1661 52 (11) Point-to-Point Protocol

19 TPKT 2126 2) ISO Transport Service on top of TCP
20 OSPF 5340 94 (13) Internet Official Protocol Standards

20

3DGen: Al-Assisted Generation of
Provably Correct Binary Format Parsers

Sarah Fakhoury, Markus Kuppe, Shuvendu K. Lahiri, Tahina Ramananandro and Nikhil Swamy
Microsoft Research, Redmond, USA
{sfakhoury, makuppe, shuvendu, taramana, nswamy } @microsoft.com

Abstract—Improper parsing of attacker-controlled input is
a leading source of software security vulnerabilities, especially
when programmers transcribe informal format descriptions in
RFCs into efficient parsing logic in low-level, memory unsafe
languages. Several researchers have proposed formal specification
languages for data formats from which efficient code can be
extracted. However, distilling informal requirements into formal
specifications is challenging and, despite their benefits, new,
formal languages are hard for people to learn and use.

In this work, we present 3DGen, a framework that makes use
of Al agents to transform mixed informal input, including natural
language documents (i.e., RFCs) and example inputs into format
specifications in a language called 3D. To support humans in
understanding and trusting the generated specifications, 3DGen
uses symbolic methods to also synthesize test inputs that can
be validated against an external oracle. Symbolic test generation
also helps in distinguishing multiple plausible solutions. Through
a process of repeated refinement, 3DGen produces a 3D specifica-
tion that conforms to a test suite, and which yields safe, efficient,

oW 4 . __3_ =

that yield trustworthy executable code. However, more com-
monly, specifications are not entirely formal and come from a
variety of sources, ranging from natural language documents,
diagrams, example code snippets, sample input/output pairs,
etc. Extracting a formal specification from such a variety of
sources requires a significant human effort, typically requiring
a process that involves:
1) Learning a new DSL;
2) Understanding the informal specification;
3) Expressing one’s understanding of the informal specifi-
cation in the DSL;
4) Iterating to refine intent, revisiting the previous steps to
arrive at a desired specification.
This is challenging enough that developers often directly
transcribe informal specifications into executable code in gen-
eral purpose programming languages, leaving the door open

Input

Documentation

Legacy Parser

>

Test Set

=

Request a 3d
Specification

Agent generates
a specification

Compile into a verified high-
performance
C parser

> il'

Al Agent

= Format.3d — everp/\rse

/

Syntax/ Test
Feedback

L

Candidate
Format.3d

\ "":ZB Test Module

* DSLs helpful intermediate abstractions for complex generation tasks
* DSLs unlock use of symbolic tools critical to guide LLMs + provide

guarantees

Projects

More on
Trusted Al-Assisted
Programming at MSR!

