
Verus: program verification for 
practical engineering

Andrea 
Lattuada

Travis
Hance

Jay 
Bosamiya

Matthias 
Brun

Chanhee 
Cho

Hayley 
LeBlanc

Pranav 
Srinivasan

Reto 
Achermann

Tej
Chajed

Chris 
Hawblitzel

Jon
Howell

Jay
Lorch

Oded
Padon

Bryan
Parno



2

+ + =



Why a new verifier?

3

barriers to productive use

barriers to further research



Design choices driven by observed burdens

4

OS Page Table

NUMA-aware 
Replica Library

Persistent-Memory 
Log

Concurrent
Memory Allocator

Distributed 
Key-Value Store

Write-Optimized
Key-Value Store



Automation: faster proofs

context: general SMT-based automation by default

problem:sluggish SMT queries

solution: efficiency-optimized verification condition generation

● easy wins: Rust ownership, aggressive context pruning
● tradeoffs: conservative triggers, total spec fn

5



6



Memory reasoning

context: performant code mutates rich data structures

problem: framing-based reasoning
is objectively awful [OOPSLA22]

solution:

● Rust ownership by default
● Sophisticated borrow checker:

elegant syntax for common patterns

7



context: performant systems code
relies on %, >>, constants

problem:mixed theories grieve Z3

solution: Local assert_by modes for

nonlinear (%),

bitvector (>>), and

assert-by-computation

Systems-specific proof automation

8



Thread concurrency

context: performant code exploits
shared-memory threading

problem:separation logic is low-level

solution: VerusSync high-level
"sharded state machine"
expresses concurrency discipline

9



Systems-level reasoning

context: IronFleet style models systems
as atomic state machines

problem:embedded TLA+ makes ugly boilerplate

solution: native atomic state machine syntax

10



11

M
ac

ro
be

nc
hm

ar
ks



12

M
ac

ro
be

nc
hm

ar
ks



13

M
ac

ro
be

nc
hm

ar
ks



M
ac

ro
be

nc
hm

ar
ks

14



Conclusion

Verus is a new verifier aimed at practical use + new research.

Try it out: play.verus-lang.org

Install it: github.com/verus-lang/verus

Ask users: verus-lang.zulipchat.com

15



16



backup

17



Automation: fully automatic proofs

context: exploit full automation (ivy, mypyvy, pushbutton)

problem:all-or-nothing

solution: opt-in integration

18

Program

Bigger Module

O
th

er
 

M
od

ul
e

Module

definitions
& invariants

(under EPR constraints)

Module

proof 



19

M
ill

ib
en

ch
m

ar
ks



20

M
ill

ib
en

ch
m

ar
ks



21

Verus scales with fn complexity



22

Verifier is fast on failures



Future Directions

Improving Rust compatibility / feature coverage => more practically usable

Verify Rust standard library

Proof stability improvements

Experiments with other backends

23


