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Why a new verifier?
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barriers to productive use

barriers to further research



Design choices driven by observed burdens

4

OS Page Table

NUMA-aware 
Replica Library

Persistent-Memory 
Log

Concurrent
Memory Allocator

Distributed 
Key-Value Store

Write-Optimized
Key-Value Store



Automation: faster proofs

context: general SMT-based automation by default

problem:sluggish SMT queries

solution: efficiency-optimized verification condition generation

● easy wins: Rust ownership, aggressive context pruning
● tradeoffs: conservative triggers, total spec fn
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Memory reasoning

context: performant code mutates rich data structures

problem: framing-based reasoning
is objectively awful [OOPSLA22]

solution:

● Rust ownership by default
● Sophisticated borrow checker:

elegant syntax for common patterns
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context: performant systems code
relies on %, >>, constants

problem:mixed theories grieve Z3

solution: Local assert_by modes for

nonlinear (%),

bitvector (>>), and

assert-by-computation

Systems-specific proof automation
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Thread concurrency

context: performant code exploits
shared-memory threading

problem:separation logic is low-level

solution: VerusSync high-level
"sharded state machine"
expresses concurrency discipline
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Systems-level reasoning

context: IronFleet style models systems
as atomic state machines

problem:embedded TLA+ makes ugly boilerplate

solution: native atomic state machine syntax
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Conclusion

Verus is a new verifier aimed at practical use + new research.

Try it out: play.verus-lang.org

Install it: github.com/verus-lang/verus

Ask users: verus-lang.zulipchat.com
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backup
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Automation: fully automatic proofs

context: exploit full automation (ivy, mypyvy, pushbutton)

problem:all-or-nothing

solution: opt-in integration
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Verus scales with fn complexity
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Verifier is fast on failures



Future Directions

Improving Rust compatibility / feature coverage => more practically usable

Verify Rust standard library

Proof stability improvements

Experiments with other backends
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