
Revealing Software 
Development Work Patterns 

with PR-Issue Graphs
Ivan Beschastnikh

University of British Columbia
In collaboration with Cleidson de Souza (Universidade Federal do Pará), 

Emilie Ma, Dongwook Yoon (UBC)

Longer talk by Emilie at https://bit.ly/3UDwyRJ

To appear in FSE 2024



GitHub: “Where the world 
builds software”



Issues: bug reports, 
feature requests

Rapptz/discord.py Project-OSRM/osrm-backend



Issues: bug reports, 
feature requests

Rapptz/discord.py Project-OSRM/osrm-backend

unfixed → addressed →



Pull Requests: work 
addressing an Issue

mlflow/mlflow



Pull Requests: work 
addressing an Issue

mlflow/mlflow

work was accepted →
possible statuses:

open, closed, merged



Issue ↔ PR = A link!

keyword →

↑ PR 8156 explicitly linked to Issue 8150 ↑



Issue ↔ PR = A link!

Issue 
8150

PR 
8156

fixes



Another explicit link: 
“duplicate”

Rapptz/discord.py



Another explicit link: 
“duplicate”

Rapptz/discord.py

↑ created earlier↑ created later

↑ duplicate keyword



Another explicit link: 
“duplicate”

Rapptz/discord.py
Issue 
7140

Issue 
7186

duplicate

↑ created earlier↑ created later

↑ duplicate keyword



Prior work has focused on 
these links.

?
fixes, duplicate

dependent
relevant

enhanced
...

?

(“@alex, this fixes #9…”, Chopra et al., CSCW 2021;
“How Are Issue Units Linked?…”, Li et al., APSEC 2018;

“Understanding shared links and their intentions…”, Wang et al., ESE 2021;
“The review linkage graph for code review analytics…”, Hirao et al., ESEC/FSE 2019;

“Traceability Network Analysis…” Nicholson et al., AIRE 2020)



Going beyond links: 
Graph Perspective



Going beyond links: 
Graph Perspective

graph perspective = more context = richer 
understanding of work practices

do developers break 
their work up?

is there a lot of 
competition?



Analyzing 90K+ Issues 
and PRs with Neo4j



Workflow type definitions

Issue 1

1+

fixes

fixes PR 1

A

PR 2

B

Example: Competing PRs

• associated with work practices
• has prototypical graph structure
• described as a combination of 

some constraints (e.g. an Issue/PR 
with some given status fixes 
another Issue/PR)



Nine workflow types



• one Issue connected to multiple 
PRs

• only one PR merged
• “wasted” work due to poor 

communication
• alternatively: finding the “best” 

solution

Competing PRs

Issue 1

1+

fixes

fixes
PR 1

A

PR 2

B

1/5



• one Issue with multiple outgoing 
‘duplicate’ Issue links

• contributors not being aware of 
other work

• additional maintenance burden
• not as frequent as you’d think!

Duplicate Issue Hub
2/5

Issue 2
t>0

Issue 1
t=0

Issue 3
t>0

duplicate

2+

duplicate



What did developers think?
• 6 interviews: 3 with maintainers 

of projects we studied; 3 with 
engineers using GitHub in a 
closed-source context

• centred around 
WorkflowsExplorer tool 
customized for their project



What did developers think?
• Help make better decisions in development process
• Duplicate Issue Hubs → change in documentation or bug reporting 

process
• Help understand inter-dependencies visually
• Are limited due to not examining contents of Issue or PR



Contributions
• Novel graph-based perspective
• Workflow type definitions and attributes
• Automatable queries and interactive tool

Longer talk at https://bit.ly/3UDwyRJ

To appear at FSE 2024

Implications
• Can inform prioritization
• Can improve code review/PM practices
• Can identify areas of wasted work
• Can extend duplicate/first issue 

detection tools (Hirao et al., 2019)
(“The review linkage graph for code review 
analytics…”, Hirao et al., ESEC/FSE 2019)


