Promises and Challenges in Bridging TLA+ Designs
with Implementations

A. Finn Hackett

(—@—) Implementation ’
a N 1

Building and Running
Distributed Systems is
Notoriously Error-prone

4

,ﬁ' S&\
Building and Runnin

Distributed Systems is
Notoriously Error-prone

-y
'

Building and Runniné
Distributed Systems is

Notorlously Error-prone {ESbeawiss
. Partlal Fallure
o

-y
'

Building and Runniné
Distributed Systems is

Notorlously Error-prone ‘2
\Pay |al r t.!ure

7+ Analyzable designs

(or Alloy, P,
Promela,
Dafny,

Verus,
F*, Coq)

Formal Methods

3¢ Findedgecases 4% Proofs

Usage of TLA+

.......
o
o e

:. Specnl
eg 50-1000 linesperspec ’

TLA+ Specification(s)

N
J/

-~
-~ (4 - o
L d L4
Stecae=" Stecae=”

N J

> Levels of abstraction

— Write properties, find logic bugs <«

— Simulate obscure edge cases

— Write formal proofs <&

Usage of TLA+

-

id -

::.’ Specnl
eg 50-1000 linesperspec ’

_; Spec -} Spec” -} e Implementation(s)

TLA+ Specification(s)

N
J

N | 2
\ ‘3
> Levels of abstraction {7
— Write properties, find logic bugs <« . Recurring question:
. How can we be (more)
— Simulate obscure edge cases «/ . sure impl and spec
' match?

— Write formal proofs <&

y- 4

If We Were Sure Our Models and Implementations Matched...

If We Were Sure Our Models and Implementations Matched...

@ Only bug possible is wrong correctness properties

If We Were Sure Our Models and Implementations Matched...

Y= Only bug possible is wrong correctness properties

<

Unreasonably precise monitoring for free using
verification tools

£V

If We Were Sure Our Models and Implementations Matched...

Y= Only bug possible is wrong correctness properties

<

Unreasonably precise monitoring for free using
verification tools

4
'

4

If we're really really sure, do we even need different
spec + impl code?

£V

How Have We Attempted Implementation Linking?

.

g

[@Confidential Consortium Framework

@etcd] ~ [Related to:
. - Verdi
Compile the TLA+ lronFleet
Trace Validation S _ -F1]
Q - eg. the PGo pro]ect
- eg collect struhctured logs *Q ~ @Q PlusPy Elixir
~ +compare with TLA+ WRRGL R ——
.. _ v [See: Choreographic PlusCal,
— —— Elixir ver.]
Test Case Generation Runtime Monitoring

..

e.g. use execution | ~ eg. put/compile the |
traces as test scenarios TLA+ assertions In your code |

Tradeoffs in Trace Validation

¥ Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

4 Strictly beyond spec verification

Tradeoffs in Trace Validation

¥/ Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

4’ Strictly beyond spec verification

@ Manual effort needed to instrument + handle logs

... how much effort can we automate?

y- 4

Tradeoffs in Trace Validation

¥/ Directly observes the implementation, could catch wide range of errors

e.g. misconfiguration, wrong assumption in TLA+

4’ Strictly beyond spec verification

@ Manual effort needed to instrument + handle logs

... how much effort can we automate?

X Incomplete: if you don't see the implementation do it, you don't check it

8, Better than nothing to use it in your integration tests

y- 4

Generating Test Cases

..

X Incomplete: if you don't see the implementation do it, you don't check it

Generating Test Cases

..

X Incomplete: if you don't see the implementation do it, you don't check it

@ Letthe spec drive implementation testing

==
<

Spec

5

Impl

Tradeoffs in Test Case Generation

¥/ Ensures implementation state space is actually explored

@ Different from implementation model checking, but similar effect

Tradeoffs in Test Case Generation

¥/ Ensures implementation state space is actually explored

(;sr) Different from implementation model checking, but similar effect

@ Extracting implementation behavior and state is still non-trivial

4’ ... can be partly automated, but fundamental refinement job remains

Tradeoffs in Test Case Generation

¥/ Ensures implementation state space is actually explored

Cé) Different from implementation model checking, but similar effect

@ Extracting implementation behavior and state is still non-trivial

4’ ... can be partly automated, but fundamental refinement job remains

@ For existing implementation, need to retrofit deterministic exploration

e.g. get a custom scheduler, or otherwise control all system actions

[See: Kani, Coyote, Chaos Engineering, Jepsen]

y- 4

Other Direction: Compile the Design

«———|Implementation '

10

Other Direction: Compile the Design

Cismiar| IMplementation
S [P
Compilation

-

(o) (o)

&

8! TLBX

e.g. PGo
[ASPLOS 23]

a N

10

Tradeoffs in Specification Compilation

¥/ Directly generates link between spec and implementation

.. 50 that's it, problem solved right?

1

Tradeoffs in Specification Compilation

¥/ Directly generates link between spec and implementation

.. 50 that's it, problem solved right?

—;—) Implementation '

o B

Translating data structures right Hidden control flow What if compiler has a bug?

o o
-—
o

& &

11

Ongoing Work...

&

12

Ongoing Work: DCal a More Customizable PGo

ﬁ Move impl-oriented
changes away from spec.

Design —> Implementation::]
1\
A —

Translating data structures right Hidden control flow What if compiler has a bug?

-~ -~ -~
-— -— -—

& G G

FYYIII LI

13

Ongoing Work: DCal a More Customizable PGo

ﬁ Move impl-oriented
changes away from spec.

(7 PGo uses fixed data
structures.
General-purpose, but can
be inappropriate.

e.g. log structures: often
specialized in practice,

but PGo forces general
purpose sequence type.

C:sr_} Constraint system to
specialize abstract
TLA+ data specs.

y- 4

Design "f > Implementationj
| A

o
o'

.............
o~
4

Translating data structures right Hidden control flow What if compiler has a bug?

-~ -~ -~
-— -— -—

& G G

FYYIIIIIy

13

Ongoing Work: DCal a More Customizable PGo

ﬁ Move impl-oriented
changes away from spec.

(7 PGo uses fixed data
structures.
General-purpose, but can
be inappropriate.

e.g. log structures: often
specialized in practice,

but PGo forces general
purpose sequence type.

C:sr_} Constraint system to
specialize abstract
TLA+ data specs.

y- 4

L ol
-

.......
Lo -
4

r 4
>
o

Design S Implementationj
‘ i

~.-.~-

o,
S,
-.-Q...---
Soee,

Translating data structures right Hidden control flow What if compiler has a bug?

-~ -~ ()
-— -— -—

& G G

FYYIIIIIy

(7 PGO's control flow impl is black-box and fixed.

Difficult to specialize compiler's output.
e.g. can't compile disjunction to I/0O select primitive.

@ Write specific strategies as meta-programs / compiler plugins.

13

a2 N\

Ongoing Work: TracelLink, Compiler-assisted Trace Validation

..

...

Manual effort needed to instrument + handle logs

... how much effort can we automate?

Design "f > Implementationj
| A

o'

peesseseeeesET o Sa,
o~
4

Translating data structures right Hidden control flow What if compiler has a bug?

& ,
ittt

14

Ongoing Work: TracelLink, Compiler-assisted Trace Validation

..

...

(7 How to find problems
in the compiled system?

@ Use the compiler to
automate trace validation
workflow.

@ Use model to analyze
trace validation soundness.

y- 4

Manual effort needed to instrument + handle logs

... how much effort can we automate?

Design S Implementationj

~.-.~-

o
!

Lo —
[4

Translating data structures right Hidden control flow What if compiler has a bug?

@

-~ -~
-— -—

G G

& ,
ittt

14

distcompiler.github.1o0

y

Promises and Challenges in Bridging TLA+ Designs
with Implementations

Compile the TLA+

"" e.g. the PGo project,

~ eg. collect structured logs ’ () PlusPy, Erlan
+ compare with TLA+ ® Q@ L y g ______________________

Trace Validation

Runtime Monitoring

...

e.g. put/compile the

~ e.g. use execution | |
~ traces as test scenarios . TLA+ assertions in your code |

Any Questions?

15

Trace Validation: Refinement w/ Implementation Traces

Existing TLA+
Specification

O
O

O

logging 1impl.

Refinement behavior
E . O
\/ [] [] [] O@

V V V V V

V

\/ e

try put(key="x", value="y")
tcp error

retry

timeout

backoff

retry
ok

16

Trace Validation: the Order Problem

|
I

R:mmhgsyste\<

w/ async messaging

|

|
I

|
I

17

Trace Validation: the Order Problem

Running system
w/ async messaging

Need
one execution
trace

L Y
-
® o

&

... but we have

multiple out of sync
logs...

17

Trace Validation: the Order Problem

log A

Need
one execution
trace

Running system
w/ async messaging

L Y
-
® o

&

¥ Sort by timestamp .. but we have
@ Use logical clocks | m”’tiplf out of sync
E 0gs...

e.g. vector clocks

17

Trace Validation: Trouble with Levels of Detail

VWrite("K1™, "V1™); |-

.

Placeholder values
> ¢) thatdon't match
&z the real system
.. or log is incomplete

-~
o

V V V V V

V V o

try put(key="x",

tcp error
retry

timeout
backoff

retry
ok

value="y")

18

Trace Validation: Trouble with Levels of Detail

KVWrite("K1™, "v1"); |-

.,

Placeholder values
. that don't match
&z the real system

.. or log is incomplete

o)

aeE)

y- 4

V

vV V V V

V V o

try put(key="x",

tcp error
retry

timeout
backoff

retry
ok

value="y")

Log info that matches? Inconvenient, often impossible.

18

Trace Validation: Trouble with Levels of Detail

KVWrite("K1™, "v1"); |-

.,

Placeholder values
. that don't match
&z the real system

.. or log is incomplete

o)

WE) og)

y- 4

V

vV V V V

>

try put(key="x",

tcp error
retry

timeout
backoff

retry

> ok

value="y")

Log info that matches? Inconvenient, often impossible.

Manually fix gaps in TLA+? Shown to work well, but not automatic.

18

Trace Validation: Trouble with Levels of Detail

KVWrite("k1", "wv1"); fms > try put(key="x", value="y")
> tcp error
\/ > r'etr'y
~ Placeholder values > Timeout
* *) thatdon't match > backoff
&z the real system ’
. > retry
.. or log is incomplete S ok

Log info that matches? Inconvenient, often impossible.

Manually fix gaps in TLA+? Shown to work well, but not automatic.

WE) 0E) ag)

Use symbolic reasoning to lazy-fill spec holes? Potential future work.

y- 4

Trace Validation: In Practice

eXtreme Modelling in Practice @ MongoDB [VLDB "20]
Tried matching logs with a spec, ran into trouble relating the 2 in a strict sense.
INSIGHT: strict, direct comparison works poorly for complex systems.

Bridging the Verifiability Gap @ Open Networking Foundation [TLA+Conf 20]
Used TLA+ properties (not the whole spec) as assertions over captured traces.
INSIGHT: for some cases, you don't need the whole spec or refinement.

Validating System Executions* with the TLA+ Tools @ Microsoft [TLA+Conf '24]

Developed state-based logging discipline and method for indirect spec-trace relationship.

INSIGHT: you can patch "holes" in the trace with more TLA+ if you're careful.

y- 4

19

Generating Test Cases: In Practice

Kayfabe, Model-based testing with TLA+ and Apalache [TLA+Conf '20]

For systems co-written with specs, control and trace evaluation w/ Apalache.
INSIGHT: can build systems w/ a control interface for testing; manual but effective

Using Lightweight Formal Methods to Validate a KV Storage Node in Amazon S3 [SOSP '21]

Wrote Rust programs that acted like TLA+ specs, compared running spec- and real-programs..
INSIGHT: concrete programs can act like specs, though without direct TLA+ link

Model Checking Guided Testing for Distributed Systems [EuroSys 23]

Read TLC state graph, generate synthetic test sequences for auto-instrumented real systems.
INSIGHT: given additional manual TLA+ work, can test-drive concrete system with TLC

y- 4

20

y- 4

Specification Compilation: Translating Data Structures

Abstract definition of a log structure (from e.g. Raft spec)

Record == [term: Nat, cmd: String, client: Nat]
Log == Seg(Record)

@ What data structure should the implementation use?
& "Good enough” general structure?

:y .. needs fast append, access to tail...
= Il must persist to disk

21

Specification Compilation: Hidden Control Flow

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

MyCriticalSection:
msg := read from A;
msg2 := Process(msg);
send msg2 to C;

©

Thanks to Markus for finding
a real example of this in a
hand-translated impl.

22

Specification Compilation: Hidden Control Flow

Consider: critical section
receives msg from node A, @

then sends msg2 to node C.

MyCriticalSection:

msg := read from A;

msg2 := Process(msg);

send msg2 to C; msg2
<2\ Evenif we don't model it, f @

F this can fail in impl.

Thanks to Markus for finding
a real example of this in a
hand-translated impl.

y- 4

22

Specification Compilation: Hidden Control Flow

Consider: critical section
receives msg from node A, @

then sends msg2 to node C. MyCriticalSection:

msg := read from A;

msg2 := Process(msg);

send msg2 to C; J) msg2
<2\ Evenif we don't model it, f @

F this can fail in impl.

If we run these 3 lines as-is,
failing send to C means we
"forget” the first msg.
Unsound!

y- 4

Thanks to Markus for finding
a real example of this in a
hand-translated impl.

Specification Compilation: Hidden Control Flow

Consider: critical section
receives msg from node A,
then sends msg2 to node C.

MyCriticalSection:
msg := read from A;
msg2 := Process(msg);

¢ msg

B
!

send msg2 to C; msg2
<2\ Evenif we don't model it, f @
F this can fail in impl.
|]f ‘_"l’_e i tf:jese é’ lines as-is, A correct implementation Thanks to Markus for finding
a4 l?g sen" :\0 -) 1Cans We @ must "remember” msg a real example of this in a
orget” the first msg. S untilit can send msg?! hand-translated impl.

Unsound!

y- 4

Specification Compilation: What if it Goes Wrong?

23

Specification Compilation: What if it Goes Wrong?

& Entirely correct system could be misconfigured

23

Specification Compilation: What if it Goes Wrong?

& Entirely correct system could be misconfigured

& Model could make unrealistic assumptions (assume lossless net, get lossy)

23

Specification Compilation: What if it Goes Wrong?

& Entirely correct system could be misconfigured

& Model could make unrealistic assumptions (assume lossless net, get lossy)

& Compiler could output wrong code

23

Specification Compilation: What if it Goes Wrong?

& Entirely correct system could be misconfigured

& Model could make unrealistic assumptions (assume lossless net, get lossy)

& Compiler could output wrong code

@ For pt. 3, could formally verify compiler, e.g. CompCert [ERST "16]

()

y- 4

23

Specification Compilation: What if it Goes Wrong?

& Entirely correct system could be misconfigured

& Model could make unrealistic assumptions (assume lossless net, get lossy)

& Compiler could output wrong code

@ For pt. 3, could formally verify compiler, e.g. CompCert [ERST "16]

Can do trace validation on compiled system. Might be easier to automate?

y- 4

PR

23

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.
Translation is literal, primarily for monitoring.

PGo [ASPLOS '23, TLA+Conf 22 "19]: compiles Modular PlusCal into Go w/ custom IO options.
Uses special protocol to auto-implement hidden control flow; evaluated on full-scale systems.

Choreographic PlusCal [TASE '23]: compiles TLA+ actions into Go monitors.

@ .. compilation seems popular for monitoring implementations ...

y- 4

24

Specification Compilation: In Practice

tlaplus/PlusPy: evaluates TLA+ actions and expressions. Ignores hidden control flow.

Elixir Translator [SAST, TLA+Conf '22]: translates TLA+ actions into Elixir code.
Translation is literal, primarily for monitoring.

PGo [ASPLOS '23, TLA+Conf 22 "19]: compiles Modular PlusCal into Go w/ custom IO options.
Uses special protocol to auto-implement hidden control flow; evaluated on full-scale systems.

(7 Currently, only full Spec2Code attempt.
Choreographic PlusCal [TASE '23]: compiles TLA+ actions into Go monitors.

@ .. compilation seems popular for monitoring implementations ...

y- 4

24

